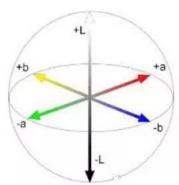
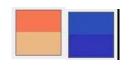
物体色行业中的所见即所测


物体色行业(比如油漆、涂料、油墨、纺织、印刷、塑料)也能讲出类似的故事,它的一个需求是,人眼看到的颜色,和测量得到的颜色一致。

什么是所见即所测?

简单来说,就是测色仪测到的结果,跟人看到的结果一致。这里说的"结果",指 CIE 1976 色彩空间中的 L*a*b*值,或者指色差值(本文都指 CIE LAB 色差),因为这两个参数人是可以去直观地和仪器测量值进行对比的。


对于 L*a*b*值,其坐标含义很直接: a*表示偏红偏绿,b*表示偏黄偏蓝,L*表示颜色有多亮。如下图

一个色样拿到手里(当然也需要个白纸作为参考白),基本是可以判断出 a*b*的正负,L*的大概值。比如下图:有两个色样,背景作为参考白,

一定可以预期,两个色样的 a*值都大于 0,因为都是偏红的,而上方色样的 a*值比下方色样大,而 L*值应该是下方色样高。如果人看到的 L*a*b*和仪器测量值有明显冲突,比如仪器测量出来发现下方色样 a*值大于上方色样,那么就有问题了。

对于色差,人能够对色差大小有一个直观的感受,比如是某一组色对的色差大,还是另外一组 色对的色差大。这种感受可以用来和测色仪的结果进行对比,例如下图,

色样对 a 色样对 b

很明显,左边色样对的色差比右边大,那么就预期:测色仪测出的色差应当也是这样。

除了 L*a*b*和色差外,测色仪可能还能测到其他参数,比如光谱反射比,或者密度(density)等,但这些参数人很难直观的去评价,所以就没法把人看的结果和仪器做对比了。

为什么需要所见即所测?否则会有什么问题?

一般 QC 或生产并不怎么需要人眼看,因为 QC 一般都是以测色仪做标准,测色仪说 Pass,就 Pass,跟人眼看无关。但是问题来了,一旦发现 Fail 了,颜色有偏差,怎么去找原因?如果测色仪说现在的颜色偏红,但人眼看是偏黄,怎么调整生产?如果测色仪色差 Fail,但人眼看色差明明很小,是过还是不过?就算是有自动化配色系统的工厂,也需要人去分析问题找原因,尤其是,有的时候可能并不是你出了问题,而可能是验收指标,或者是材料本身,或者是测量方法的问题。而仅凭测色仪的数据,没有用眼睛去看,或者看到的结果和测色仪结果冲突,将对问题的解决带来很大困扰。所以在产品的修正、品管或者新产品的开发过程中,所见、所测的一致性就显得非常重要。

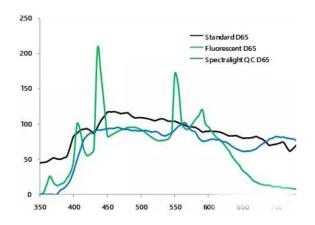
为什么会出现所见所测不符?

我们从源头开始分析,无论是人还是仪器,要"看到"颜色都需要三个要素:光源+物体+观察者(这里不考虑物体表面纹理,颜色不均匀,观察角度等次要因素影响)。

三要素中,物体是相同的;测色仪的光源是内置的,一般是卤钨灯、氙灯或者 LED 灯,而人观察的光源可能是荧光灯、LED、白炽灯,也可能是户外日光;测色仪的"观察者"是 CIE 标准观察者,简单理解就是正常人眼的平均值。所以很显然,光源的不同是导致人眼看到的颜色和测色仪有差异的主要原因。

除了光源外当然其他还有很多原因,比如物体表面有纹理,那么此时仪器设置 SCI (包含镜面光) 还是 SCE (排除镜面光) 就很讲究,如果物体有一定的光泽,那么观察时的角度就很重要,如果颜色不均匀,选择的孔径、测量的位置就很重要,如此等等,这些原因都是可以通过正确的操作或设置去排除,这方面可以展开讲怎样正确评价物体色。

当前的困难点在哪里?


最大的困难在于光源,因为测色仪虽然使用的是卤钨灯、氙灯或者 LED 灯,但通过计算还是会把颜色值转换到标准光源如 D65/A/F11 光源下。换言之,测色仪是在这些标准光源下去看颜色的(关于标准光源,感兴趣的读者可以看公众号前面的文章: 色彩科学中的常用光源, 你清楚么?)。

如果人能够在相应的标准光源下去看这些颜色,那么可以保证人看到的颜色和测色仪测量值相同,因为两者使用了同一光源,同一物体,观察的"眼睛"又几乎一样。问题来了,标准光源事实上是无法获得的,因为那只是一串光谱功率分布的数字而已,实际生活中,并没有任何灯具能够生成标准光源。最接近标准光源的东西是对色灯箱,类似下图。

如果这些灯箱光源和标准光源比较接近,能够保证看颜色差得很小,那么就可以保证所见即所测。

S	Standard D65Fluorescent D65		Spectralight QC D65
CCT	6503K	6395	6356
R1	100	78.7	93.2
R2	100	88.7	95.9
R3	100	93.5	98.0
R4	100	80.7	93.9
R5	100	81.8	94.3
R6	100	84.9	94.8
R7	100	85.5	96.7
R8	100	64.2	92.0
R9	100	-9.0	77.3
R10	100	71.9	91.4
R11	100	76.3	92.3
R12	100	82.4	94.6
R13	100	81.0	93.3
R14	100	95.9	98.5
R15	100	71.8	92.6
CIE Ra	100	82.2	94.8
MIvis	0	1.46	0.26
Mluv	0	4.32	4.52
x	0.3127	0.3148	9 3 170 3
V	0.3290	0.3286	0.53315

可惜的是,目前灯箱性能普遍一般,如上表和上图,离标准 D65 的性能指标有一定的差距。 ISO (23603 和 3664) 和 ASTM (D1729) 对灯箱都有推荐标准,比如显色指数 (CIE Ra) 应当在 90 以上,同色异谱指数在 C/D 等等。但即使灯箱满足了这些标准,距离所见即所测的要求还是差了很远,举个例子,见下图两个 D65 模拟光源下样品,显色指数左侧是 98,右侧是 90,但其实颜色差的还是很明显,例如里面的红色。

简言之,目前的灯箱光源品质还不够,ISO 和 ASTM 标准只是解决了有无问题,就好像只是PC 的 DOS 系统。若要达到所见即所测,实现 Windows 系统,那么模拟光源下看色样的色差和标准光源的色差应当小于 1,即接近人眼辨色的阈值,相应的显色指数应当在 98 以上,同色异谱指数最好在 A 级。

上海罗中科技发展有限公司

地址: 上海市江场西路 299 弄中铁中环 4 号楼 906B Tel: +86-21-61485255 Fax: +86-21-61485258 E-mal: info@roachelab.com www.roachelab.com

